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A direct numerical simulation of the spherical Couette flow between two spheres
with the inner sphere rotating was performed to investigate the detailed structure,
formation process and mechanism of the spiral Taylor–Görtler (TG) vortices. For
comparison with our previous experiments, a moderate gap case with clearance ratio
β = 0.14 is chosen in the present numerical study. With adequate initial and boundary
conditions, we have sucessfully simulated the supercritical spiral TG vortex flow in
this system. Analysis of the numerical results reveals the structure and features of the
spiral TG vortices. The flow consists of one toroidal TG vortex, one toroidal vortex
cell, three spiral TG vortices and a secondary flow circulation in each hemisphere, and
this supercritical flow solution features rotational and equatorial asymmetries. It is
found that the spiral TG vortices are composed of a pair of counter-rotating, unequal
spiral vortices with essentially different structural forms. One begins in the secondary
flow circulation at higher latitude and ends with a connection to the toroidal vortex
cell at lower latitude while the other one starts on the inner rotating spherical surface
at lower latitude and ends on the outer stationary spherical surface at higher latitude.
Through sucessive visualizations which display the transient features of the spiral
TG vortices, we observe that vortex tearing, splitting, tilting, reconnecting, stretching
and compressing occur in the formation of the spiral TG vortices. Pairing of two
alternating helical vortices is the key process in their evolution. To understand the
formation mechanism, we consider the vorticity production in the azimuthal vorticity
component equation. The important vorticity tilting and stretching terms play dif-
ferent roles in the formation process of these two counter-rotating spiral vortices.
The vorticity tilting term is responsible for generating both of the spiral vortices. The
vorticity stretching term acts to stretch one of the spiral vortices from the inner sphere
to the outer sphere while suppressing the stretching of the other in the azimuthal
direction. The different formation mechanisms for these two counter-rotating spiral
vortices lead to the structure of the spiral TG vortices.

1. Introduction
The spherical Couette flow between two concentric rotating spheres usually shows

dynamical behaviour analogous to the classical circular Couette flow between two con-
centric rotating cylinders in the equatorial regions, and to the flow between two plane
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rotating disks in the polar regions. Therefore, the study of this flow is of basic im-
portance in finding a general hydrodynamic stability theory for rotating fluid in an
enclosed cavity volume. Owing to the spherical geometry and rotation in this spherical
shell flow situation, understanding the fluid dynamics of the motion is also relevant
to both global astrophysical and geophysical processes and engineering applications.

In the spherical Couette flow system, the closed nature of the flow and its depen-
dence on various factors lead to a wide variety of flow solutions and mechanisms from
which instability arises. Most previous experimental investigations were restricted to
the cases of small and medium gap widths in which the first instability occurred as
Taylor vortices at the equator (e.g. Munson & Menguturk 1975; Wimmer 1976, 1981;
Yavorskaya et al. 1980; Nakabayashi 1983; Bühler 1990; Bar-Yoseph et al. 1990;
Egbers & Rath 1995). Some experimental and theoretical studies were also conducted
recently for wide gap widths in which the first instability appeared in a form of non-
axisymmetric spiral waves (Egbers & Rath 1995; Araki, Mizushima & Yanase 1997;
Wulf, Egbers & Rath 1999). When the outer sphere is held stationary, with the inner
sphere rotating, the spherical Couette flow between them is characterized by three
control parameters: the Reynolds number, clearance ratio and rotational acceleration
rate. We have carried out a series of experimental work on this concentric flow for
the range of clearance ratios where the Taylor instability occurs in the equatorial
region (Nakabayashi 1983; Nakabayashi & Tsuchida 1988 a, b). In these studies, the
Reynolds number was increased stepwise by a quasi-static increase of the rotation
frequency of the inner sphere, and the final flow field of the last step was used as the
initial condition for obtaining the flow at the next step. These experiments showed a
similar laminar-turbulent transition to that in the circular Couette flow with only the
inner cylinder rotating.

A fascinating vortex formation in spherical Couette flow with the inner sphere
rotating was observed at a higher Reynolds number, and the induced vortices were
called spiral Taylor–Görtler (TG) vortices by Nakabayashi (1983). In each hemisphere,
this supercritical spiral TG vortex flow consists of one toroidal TG vortex near
the equator and some pairs of spiral vortices in high-latitude regions whose axes
are tilted with respect to the azimuthal direction. The spiral TG vortices travel in
the azimuthal direction at about half of the rotational speed of the inner sphere.
Although the characteristics of the spiral TG vortices were described in our previous
experimental studies, the dynamical problems (i.e. detailed structure, and formation
mechanism) have remained unresolved since it is difficult to obtain quantitative
results simultaneously and the data obtained from the measurements are insufficient
for analysis. Thus a direct numerical simulation, which can provide a reliable source
of information, would be a suitable tool for a more detailed investigation of the spiral
TG vortices. With a spectral method, Dumas & Leonard (1994) have successfully
numerically simulated the spiral TG vortices in the spherical Couette flow between
two concentric spheres with the inner sphere rotating for a narrow gap case with
clearance ratio β = 0.06, and the results were in very good agreement with our
previous experimental flow in the same case (Nakabayashi 1983). The inclination angle
and number of spiral vortices agreed well. Dumas & Leonard (1994) first referred
those vortex-splitting regions as vortex branches. As in our previous experimental
result, they found six spiral cells with three corresponding ‘starting points’ were found
in each hemisphere. Further, they suggested that the terminology ‘starting points’
used for describing the spiral vortices in our previous experimental work (also seen in
figure 6 of Nakabayashi 1983) should be ‘ending points’. We will show in the present
study that their suggestion is basically correct as if one considers the formation
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location of the vortex branches. For the case of both spheres rotating in spherical
Couette flow, Zikanov (1996) was able to compute the spiral TG vortices by using
a pseudospectral method, and his numerical results provided a detailed description
of the three-dimensional flows and the pattern of transitions among various regimes.
However, our knowledge about the spiral TG vortices in the spherical Couette flow
is still far from complete.

The objective of the present study is to investigate through a direct numerical
simulation the interesting vortex flow that we observed in our experiments. In Sha,
Nakabayashi & Ueda (1998), we considered a numerical algorithm designed for three-
dimensional, time-dependent incompressible Navier–Stokes fluids, and decoupling
between the velocity and the pressure was achieved. The numerical method for solving
the Navier–Stokes equations in spherical polar coordinates was presented in detail
in that work. The numerical code, which is second-order accurate in time and space
based on the finite-difference scheme, was used to compute the spherical Couette flow
between two spheres with the inner sphere rotating, and we successfully simulated the
subcritical flows (0-vortex flow, 0-vortex flow with pinch) and the supercritical flows
(TG vortex flow, spiral TG vortex flow). In this paper, we specifically focus on the
fluid dynamics of the spiral TG vortex flow for a moderate gap case with clearance
ratio β = 0.14 (Nakabayashi 1983). Careful direct numerical simulation of the spiral
TG vortex flow has been performed, and a systematic analysis carried out to explore
the detailed structure, formation process and mechanism of the vortices.

The paper is organized as follows. In § 2, the governing equations and boundary
conditions are presented first. Then the numerical formation and procedure are
explained. The numerical results for the spiral TG vortex flow are presented in § 3, in
which the three-dimensional spatial configuration, transient features and generation
mechanism are discussed. Concluding remarks are given in § 4.

2. Mathematical formation and solution method
2.1. Governing equations of motion

We consider the motion of an isothermal, incompressible, Newtonian fluid contained
in an annulus between two concentric spheres. The spheres are assumed to be rigid and
the cavity between them is filled with a viscous fluid. The inner sphere is constrained
to rotate about the vertical axis with a prescribed angular velocity Ω, while the outer
sphere is fixed. The inner and outer radii of the spheres are R1 and R2, respectively.
The Navier–Stokes equations and the continuity equation, together with appropriate
initial and boundary conditions, completely describe the physics of this spherical
Couette flow problem.

The incompressible Navier–Stokes equation and the continuity equation are

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u, (2.1)

∇ · u = 0, (2.2)

respectively, where u is the velocity field, p is the kinematic pressure and Re is the
Reynolds number, defined as Re = ΩR2

1/ν where ν is the kinematic viscosity. The
governing equations have been non-dimensionalized with the characteristic velocity
scale ΩR1 and the characteristic length scale R1.

The above equations are now rewritten in spherical polar coordinates (r, θ, φ) as
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follows:
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where ur, uθ and uφ are the velocity components in the radial, meridional and azimuthal
directions, respectively.

No-slip (rigid) boundary conditions on the spherical boundaries are

ur = uθ = 0, uφ = sin θ on r = R1/R1 = 1,
ur = uθ = uφ = 0 on r = R2/R1.

}
(2.7)

2.2. Numerical procedure

In this subsection, the numerical procedure for solving the spherical Couette flow
with the three-dimensional, time-dependent incompressible Navier–Stokes equations
in spherical polar coordinates is described. Further details of this numerical method
are to be found in Sha et al. (1998).

The governing equations of motion are discretized in space and time by a finite-
difference method. Spatial discretization is carried out in the computational domain
between the two concentric spheres. The spatial discrete operators are evaluated using
the central finite-difference scheme on a staggered grid (Harlow & Welch 1965) and the
spatial discretization is second-order accurate in space. For the time integration, we
have used a semi-implicit time-advancement scheme with the implicit Crank–Nicolson
second-order-accurate scheme for the conservative part of the viscous term and the
explicit Adams–Bashforth second-order-accurate scheme for the convective and the
remaining viscous terms. The pressure term is treated in a mixed form of the Crank–
Nicolson and Adams–Bashforth scheme. However, these fully discretized equations
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for the primitive variables are still coupled via the incompressibility condition, and are
expensive to compute directly. Here, the decoupling between the velocity and pressure
of the discretized equations is achieved by an approximate factorization method (Sha
et al. 1998). This decoupling process leads to several smaller decoupled systems for
the velocity components and the pressure, respectively, so the computational cost
of calculations of the incompressible time-dependent Navier–Stokes equations in
this spherical Couette flow problem can be significantly reduced in the velocity–
pressure formulation. In this numerical algorithm, we introduced two intermediate
velocities into the split discretized equations, and a discrete Poisson equation for
the pressure could be obtained easily based on the incompressibility condition. With
the approximate factorization method, the order of the temporal accuracy can be
preserved. As a result, the discretization of the numerical method remains second-
order accurate in time and space. The system of split discretized equations is then
time-advanced to obtain the solution.

The approximate factorization technique (Beam & Warning 1976; Briley &
McDonald 1977; Kim & Moin 1985) is used to treat the discrete velocity equation.
The velocity is calculated by solving three tridiagonal matrices with a standard
TDMA (tridiagonal-matrix algorithm) method. From the discrete Poisson equation
we compute the pressure, first by application of an ADI (alternating-direction implicit)
method (Peaceman & Rachford 1955), and then by solving the reduced equation with
a standard TDMA method for two tridiagonal matrices and with a refined TDMA
method (Temperton 1975) for a cyclic tridiagonal matrix.

In the calculation, the computational domain of the three-dimensional spherical
shell is divided into a number of grids 22 × 361 × 91 in the radial, meridional
and azimuthal directions, respectively. The staggered grid arrangement is employed
in the computation where the pressure is defined at the centre of the cell and
velocity components on the cell surfaces. The grids are uniform in the meridional and
azimuthal directions, while a geometric distribution is used in the radial direction to
improve the resolution in the near-wall region of the spheres. The above grid spacings
have been shown in Sha et al. (1998) to be sufficient to resolve the spherical spiral
TG vortex flow. In order to ensure numerical convergence, the stability of the overall
numerical method is restricted by the CFL condition. The time step is required to
satisfy the stability condition of max{CFL} < 1 where max{CFL} is the maximum
value of the CFL number evaluated in the computational domain. Time integration
is carried out until the steady or time-periodic state is obtained.

For the initial condition, the axisymmetric solution of the so-called 1-vortex flow
(Marcus & Tuckerman 1987a, b), which was obtained in our previous numerical work
(Sha et al. 1998), has been chosen to simulate the higher-Re spiral TG vortex flow.

3. Results and discussion
The numerical computations were performed based upon the initial condition

given in § 2.2. For comparison, the moderate gap of β = (R2 − R1)/R1 = 0.14 has
been selected to be the same as that in our previous experiments (Nakabayashi 1983,
Nakabayashi & Tsuchida 1988a, b). The Reynolds number Re was quasi-statically
increased (dR∗/dt = 0.0006, where R∗ is defined as R∗ = Re/Rec in which Rec is
the critical Reynolds number for occurrence of the TG vortex) in order to eliminate
the effect of the rotation acceleration rate on the spherical Couette flow solutions
(Nakabayashi & Tsuchida 1995). As we increased Re the 1-vortex flow became
unstable due to secondary instability, and its symmetry was broken. This secondary
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Figure 1. Plots of the velocity vectors from the numerical simulation of the spiral TG vortex flow
in the (θ, φ) spherical cross-section at the radial position r = 1 + β/2 (the mid-gap radius) viewed
from (a) φ = 310◦, (b) φ = 220◦, (c) φ = 130◦, (d) φ = 40◦. The Reynolds number is Res = 1100.
The contour of zero radial velocity (ur = 0) is drawn with thin and thick solid lines: the thin lines
indicate the centre positions of the two toroidal TG vortices; the thick lines, which are counted by
every two thick lines from each side of the equator, correspond to the centre lines of the spiral TG
vortices.

instability resulted in a transition from the 1-vortex flow to the supercritical spiral
TG vortex flow at Res = 1110 (Res being the Reynolds number for the occurrence
of spiral TG vortices). After a non-dimensional transition time t = 270π, the flow
field became steady and the spiral TG vortex flow was established. In this section,
we analyse in detail the direct numerical simulation results for the spiral TG vortex
flow at the mature stage t = 270π, to reveal its detailed structure, and formation
mechanism.



On the structure and formation of spiral Taylor–Görtler vortices 329
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Figure 2. As in figure 1 but for the (θ, φ) spherical cross-section at the radial position
r = 1 + 0.02β, representative of the spiral TG vortex flow near the inner sphere.

3.1. Structure and features

Figures 1, 2 and 3 show plots of the velocity vectors (uφ, uθ) of the spiral TG vortex
flow solution on (θ, φ) spherical cross-sections at mid-gap, and near the inner and
outer spheres, respectively. These figures are viewed at (a) φ = 310◦, (b) φ = 220◦, (c)
φ = 130◦, (d) φ = 40◦. The pattern rotates in the same direction as the inner sphere
(counterclockwise). The contours of zero radial velocity (ur = 0) in these sections
are drawn with thin and thick solid lines, which are the boundaries between inflow
(ur < 0) and outflow regions (ur > 0). Thin lines indicate the centre positions of
the two toroidal TG vortices. The thick ones, which are counted by every two thick
lines from each side of the equator, correspond to the centre lines of the TG spiral
vortices. These figures show that there exists one toroidal TG vortex and three spiral
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Figure 3. As in figure 1 but for the (θ, φ) spherical cross-section at the radial position
r = 1 + 0.98β, representative of the spiral TG vortex flow near the outer sphere.

TG vortices in each hemisphere. The lines of the centre positions of the toroidal TG
vortices are nearly parallel to the equator while the centre lines of the spiral TG
vortices are inclined in the azimuthal direction. In the equatorial region where the
two toroidal TG vortices are formed, the flow is divergent near the inner sphere,
corresponding to inflow at the equator, while it is convergent near the outer sphere.
The flow fields, portrayed in mid-latitude regions, appear to wrap the spherical cross-
section with three converging/diverging zones in each hemisphere. In the regions close
to the poles, the fluid flows from the poles toward the equator near the inner sphere
and from the equator to the poles near the outer sphere. The particular features of
the spiral TG vortex flow are of the rotational and equatorial asymmetries.

In order to gain more insight in the three-dimensional structure of the spiral TG
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vortices, visualizations of the azimuthal vorticity field given by

ωφ =
1

r

[
∂(ruθ)

∂r
− ∂ur

∂θ

]
(3.1)

are shown in figure 4. This figure can be compared with figure 6 of Dumas & Leonard
(1994). Here, colour represents the azimuthal vorticity ωφ iso-surfaces: purple denotes
positive and yellow negative. In the spiral TG vortex flow there are one toroidal TG
vortex, one toroidal vortex cell and three spiral TG vortices in each hemisphere and
the flow in each hemisphere is identical except for a change of sign in ωφ. So in the
following we mainly focus our discussion on the northern hemisphere only. In figure
4(d), the toroidal TG vortex, the toroidal vortex cell A, the two spiral vortices B and C,
the fore portion D another spiral vortex of the same class as C and the thin vorticity
layer E adjacent to the outer sphere are indicated in the northern hemisphere. There
is a toroidal vortex cell A on one side of the toroidal TG vortex, although this is not
easy to deduce from the flow fields depicted in figures 1, 2 and 3. A is different from
the TG vortex: they have opposite signs of circulation in the northern hemisphere,
and A is connected with the spiral vortex C. Further, the TG vortex near the equator
is caused by the Taylor-type first instability while A is a strengthened axisymmetric
azimuthal vorticity cell in the secondary flow circulation.

Two spiral vortices B and C are observed to coexist. C is connected to the toroidal
vortex cell A. The region in which C splits from A is the vortex branch reported
by Dumas & Leonard (1994), and it is just the part of C which branches away
from A. Vortex D is the fore portion of a vortex of the same class as the spiral
vortex C at higher latitude. The spiral vortex B between the toroidal vortex cell
A and the spiral vortex C forms a counter-rotating pairing with C. This spatial
helical pairing forms the spiral TG vortices which were defined in our previous
experiments study (Nakabayashi 1983). Thus, the spiral TG vortices are a pair of
counter-rotating helical vortices. Actually, there are three pairs of these spiral vortices
in each hemisphere. For each pair, a stronger, larger helical vortex (C) has as its
counterpart a relatively weaker, small helical vortex (B). The spiral TG vortices are
rotationally and equatorially asymmetric and travel in the same azimuthal direction
as the inner rotating sphere. It is estimated that the spiral TG vortices are inclined
to the azimuthal direction by an angle of approximately 4◦. It can be also estimated
from the simulation results that the phase speed of spiral TG vortices is about half
of the inner sphere rotation speed.

The thin vorticity layer E is caused by the rapid variation of the meridional velocity
near the outer spherical surface. Because of the thin vorticity layer attached to the
outer sphere, it is impossible for us to see through the inside in figure 4 as it is hidden
by the purple colour, i.e. the thin vorticity layer.

Figure 5 shows the azimuthal vorticity ωφ at different meridional cross-sections. By
tracking these vortices, more comprehensive information on the spatial configuration
of the spiral TG vortices can be obtained from figure 5. We first note that the TG
vortex located near the equator has a constant size and is parallel to the equator.
It is also observed that the toroidal vortex cell A is either connected to the spiral
vortex C or separated from C by B. Consequently, the size of A varies although its
axis is nearly parallel to that of the toroidal TG vortex. An important feature in
figure 5 is that the structural forms of the spiral vortices B and C are different. B,
which originates at the inner sphere boundary, stretches in the gap and then extends
outward into the outer-sphere boundary region, whereas the head of C disappears in
the secondary flow circulation while its tail portion connects to the toroidal vortex cell
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Figure 4. Iso-surfaces of positive and negative azimuthal vorticity components of levels ±0.9 for
the spiral TG vortex flow at Res = 1110. Purple shows a positive value and yellow a negative one.
Green represents the inner sphere surface. They are viewed from the same perspectives as in figures
1, 2 and 3: (a) φ = 310◦; (b) φ = 220◦; (c) φ = 130◦; (d) φ = 40◦. ‘A’ denotes the toroidal vortex
cell in the neighbourhood of the toroidal TG vortex. ‘C’ is the spiral vortex being connected with
the toroidal vortex cell A. ‘B’ between A and C is an accompanying spiral vortex of C, and has
the opposite sign of vorticity to the toroidal vortex cell A and spiral vortex C. ‘D’ indicates a fore
portion of another spiral vortex. ‘E’ represents a thin vorticity layer adjacent to the outer spherical
boundary.

A at lower latitude. The spiral TG vortices appear in a helical combined form of two
counter-rotating spiral vortices B and C whose structures differ from one another.
It is also demonstrated that thin vorticity layers are formed near both the sphere
boundaries, e.g. the thin vorticity layer E is seen adjacent to the outer-sphere surface.

To obtain a clearer image of the spiral TG vortices, we subtract the 0-vortex flow
solution, which was obtained in Sha et al. (1998), from the spiral TG vortex flow field,

Figure 5. Azimuthal vorticity at different meridional cross-sections of the region between θ = 50◦
and θ = 130◦ for the spiral TG vortex flow at Res = 1110. The meridional cross-sections are selected
over one wavelength of the spiral TG vortices at (a) φ = 32◦, (b) φ = 52◦, (c) φ = 72◦, (d) φ = 92◦,
(e) φ = 112◦, (f) φ = 132◦, (g) φ = 152◦, (h) φ = 172◦, (i) φ = 192◦. The tick marks on the inner
and outer spheres are spaced at intervals of π/18 radians. The gap width has been exaggerated by
trebling from the interval [1, 1 + β] to [1, 3(1 + β)]. The contour levels range from −6.5 to 6.5 in
steps of 0.5. Solid lines indicate the positive values while dashed lines indicate negative ones. The
labels A, B, C, D and E are the same as in figure 4.
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Figure 5. For caption see facing page.
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Figure 6. As in figure 4 but for the iso-surfaces of positive and negative azimuthal vorticity
components of levels ±0.75 for the spiral TG vortex flow field at Res = 1110 from which the
0-vortex flow solution at Re = 800 has been subtracted. The frames in (a)–(c) show the regions for
which close-ups of the detailed structure of the spiral TG vortices is given in figure 7. The labels A,
B, C and D are the same as in figure 4.

and show visualizations of the modified azimuthal vorticity field in figure 6. The thin
vorticity layers, which were formed in the secondary flow circulation near the inner
and outer spherical boundaries, have been erased in these figures for clarity. Figure
6 clearly shows the three-dimensional structure of the spiral TG vortices which we
have described above. Further, in figure 7 we can examine more closely the detailed
structure of these vortices (i.e. starting and ending points, branching region) in the
three framed regions given in figure 6. Figure 7 clearly shows that the spiral vortex C
begins in the secondary flow circulation at higher latitude and ends with a connection
to the toroidal vortex cell A at lower latitude. In contrast, the spiral vortex B starts on
the inner rotating spherical surface at lower latitude and ends on the outer stationary
spherical surface at higher latitude. So, when discussing the formation location of
these spiral vortices at the lower latitude the terminology ‘ending point’ is appropriate
for describing the spiral vortex C while for the spiral vortex B ‘starting point’ is
appropriate. This is also made more clear in next subsection as we look into the
evolution process of these spiral vortices. In table 1, we summarize the characteristics
of the spiral TG vortices obtained from the previous experiments (Nakabayashi 1983;
Nakabayashi & Tsuchida 1988a) and the present numerical study. Clearly, they are
in good agreement. Finally, an illustration of the three-dimensional structure of the
spiral TG vortex flow in the northern hemisphere is given in figure 8.
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(a)

(b)
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Figure 7. Close-up visualizations of the detailed structure of the spiral TG vortices: perspective
view of iso-surfaces of the azimuthal vorticity plus three slices of the azimuthal vorticity component.
Respectively, (a), (b) and (c) correspond to the frames in figure 6 (a), (b) and (c). Note in (a) the
‘ending point’ of the spiral vortex B, in (b) the ‘starting point’ of the spiral vortex C, and in (c) the
‘starting point’ of the spiral vortex B and vortex branching region. Levels of iso-surfaces of positive
and negative azimuthal vorticity components are the same as in figure 6, and contour levels in the
slices range from −3.0 to 3.0 in steps of 0.3.
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TG vortex

A

B

C
A

D

Figure 8. An illustration of the three-dimensional structure of the spiral TG vortex flow in the
spherical Couette flow in the northern hemisphere. The outer sphere is held stationary and the inner
sphere is constrained to rotate about the vertical axis. The clearance ratio β is 0.14 for a moderate
gap case, and the Reynolds number Re is quasi-statically increased to obtain this supercritical
vortex flow at Res = 1100. The labels A, B, C and D are the same as in figure 4.

Dynamical characteristics Geometrical characteristics

Previous experiments R∗ = 1.13 (Res = 1017) Three pairs of spiral vortices
(Nakabayashi 1983; Move in direction of rotation in the northern hemisphere
Nakabayashi & Phase speed about half of the Rotational asymmetry
Tsuchida 1988a) inner-sphere rotation speed Inclination angle 3◦

Present numerical study R∗ = 1.18 (Res = 1110) Three pairs of spiral vortices
Move in rotating direction in each hemisphere
Phase speed about half of the Rotational and equatorial
inner-sphere rotating speed asymmetries

Inclination angle 4◦

Table 1. Summary of some characteristics of the spiral Taylor–Görtler (TG) vortices in the spherical
Couette flow between two spheres with the inner sphere rotating and the outer sphere fixed. The
clearance ratio β is 0.14 in the laboratory experiments and in this numerical study.

3.2. Formation process

In this subsection, we are concerned with the formation process of the spiral TG
vortices and investigate the transient features. Figure 9 is a sequence of projections
of the azimuthal vorticity ωφ, onto the (θ, φ)-plane of iso-surfaces, illustrating the
temporally and spatially growing structure of the spiral TG vortices. For ease of
description, the dynamic evolution is considered in three stages, i.e. the initial stage
in figure 9(a, b), the developing stage in figure 9(c, d), and the mature stage in figure
9(e, f).

It is seen in figure 9(a) that at t = 108π the flow field still retains the rotational
and equatorial reflection symmetries. As time progresses, the symmetries are broken.
Figure 9(b), shows at a late time of the initial stage (t = 227π) that tearing begins to
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occur in the vortex EC (the evolving vortex C) and the vortex EB (the evolving vortex
B) appears to be formed in the inner rotating sphere boundary. At an early time of
the developing stage (t = 231π) shown in figure 9(c), EC is tilted at an angle to the
azimuthal direction and split into three parts, but EB is still attached to the inner
sphere at this stage. By the late time at t = 244π of the developing stage (see figure
9d), EC is elongated and it appears to be reconnected with the vortex cell EA (the
evolving vortex A). At the same time EB is stretched from the inner-sphere boundary
region and then extends into the outer-sphere boundary region. At an early time of
the mature stage (t = 252π) shown in figure 9(e), EC is now completely merged with
the toroidal vortex cell A. The vortex branch region, which Dumas & Leonard (1994)
mentioned, is created by the connection of the spiral vortex C with the toroidal vortex
cell A, and the spiral vortex B is strengthened. It is seen that the pairing process
between the two counter-rotating spiral vortices B and C occurs and this results in
the spiral TG vortices. This is more apparent when we look at the spiral TG vortex
flow at a late time of the mature stage (t = 270π) in figure 9(f). We observe that the
vortex tearing, splitting, tilting, reconnecting and stretching phenomena emerge in the
formation of the spiral TG vortices. After the spiral TG vortex flow is completely
formed in figure 9(f), the flow field then remains in a time-periodic state. It is clear
from the above results that the pairing of two alternating helical vortices is the key
process that determines the structural character of the spiral TG vortices in this
spherical Couette flow.

3.3. Formation mechanism

To investigate the formation mechanism of the spiral TG vortex flow, we consider the
vorticity production by analysing the vorticity equation. The equation for the vorticity
is obtained by applying the curl operator to (2.1). This yields

∂ω

∂t
+ u · ∇ω = ω · ∇u+

1

Re
∇2ω, (3.2)

where ω = ∇ × u is the vorticity vector. Since the spiral TG vortices are dominated
by elongated quasi-streamwise vorticity structure, we consider only the azimuthal
component ωφ of the vorticity vector. Using the Navier–Stokes equations in spherical
polar coordinates described in § 2.1, the expression for the evolution of the azimuthal
vorticity from (3.2) is
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where ωr, ωθ are vorticity components in the radial direction and in the meridional
direction, respectively. The second term on the left-hand side of (3.3) is the vorticity
advection term. The first, second and third terms on the right-hand side are the pro-
duction rate terms representing the effects of vorticity tilting, twisting and stretching,
respectively. The last term on the right-hand side is the vorticity viscous diffusion
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term. Next, we calculate the size of each term to determine which are important to
the formation of the spiral TG vortices.

The time evolution of (θ, φ)-plane distributions of the quantities in (3.3), namely,
(a) the azimuthal vorticity component, (b) the vorticity tilting term, (c) the vorticity
stretching term, (d) the vorticity twisting term, (e) the vorticity advection term and
(f) the vorticity viscous diffusion term is illustrated in figures 10–13. As in figure 9,
these figures are projected onto the (θ, φ)-plane in Cartesian coordinates and depicted
over the range of 0◦ 6 φ 6 360◦ and 50◦ 6 θ 6 130◦. First, the result at t = 108π
is shown in figure 10 for reference. Then, figures 11, 12 and 13 give the results for
the representative initial stage at t = 227π, developing stage at t = 244π and mature
stage at t = 270π, respectively. For convenience of discussion, all the above quantities
have been integrated along the radial direction over the gap. In these figures, solid
lines denote positive values while dashed lines represent negative ones.

In figure 10 at t = 108π, the distributions of all quantities are still axisymmetric
and reflection symmetric. In this equilibrium flow state, the vorticity stretching term
is much smaller than other terms, and the vorticity tilting, twisting, advection and
viscous diffusion terms mainly balance each other. A close inspection of (d) the
vorticity twisting term, (e) the vorticity advection term and (f) the vorticity viscous
diffusion term in figures 11, 12 and 13 shows that the vorticity advection term advects
the vorticity downstream in the azimuthal direction. Second, we see that the vorticity
viscous diffusion term always tends to cause attenuation of the vorticity. Third, we find
that the vorticity twisting term, which is basically cancelled out by the vorticity tilting
term and acts here in the same manner as the vorticity viscous diffusion term, usually
acts to decrease the vorticity. We restrict ourselves in the following to examining the
transient changes of (a) the azimuthal vorticity component, (b) the vorticity tilting
term and (c) the vorticity stretching term in figures 11, 12 and 13.

In the initial stage at t = 227π shown in figure 11, the 1-vortex flow becomes
unstable due to the secondary instability which results in a transition to the super-
critical spiral TG vortex flow at Res = 1110. It is known that it takes quite a long
time for the transition from the equilibrium flow state to the spiral TG vortex flow
to occur. It is seen in figure 11 that the symmetries have been broken at this time. As
we are mainly concerned with spiral vortex formation, we will limit our examination
to the high-latitude regions in the northern hemisphere where the spiral vortices B
and C are generated. It is observed in figure 11(b) that the distribution pattern of
the vorticity tilting term tends to be inclined in the azimuthal direction and there
are positive and negative peaks, consistent with the locations of the positive-sign
vorticity (spiral vortex B) and negative-sign vorticity (spiral vortex C) shown in figure
11(a). But, on comparing figures 11(c) and 11(a), it is easily seen that the locations
of peaks of the vorticity stretching term do not match those of the spiral vortices
B and C, implying that at this time the vorticity stretching term has little effect on
the formation of the spiral TG vortices. This means that at the initial stage, the
vorticity tilting term is the only dominant contribution and is particularly responsible

Figure 9. Time sequences of a plane view of the iso-surfaces of positive and negative azimuthal
vorticity components of levels ±0.75 for illustrating the evolution process of the spiral TG vortex
flow at Res = 1110. (a) t = 108π, (b) t = 227π, (c) t = 231π, (d) t = 244π, (e) t = 252π, (f) t = 270π.
They are projected onto the (θ, φ)-plane in Cartesian coordinates and visualized in a frame of
0◦ 6 φ 6 360◦ and 50◦ 6 θ 6 130◦. Purple shows positive values and yellow negative values. The
labels A, B and C are the same as in figure 4. The labels EA, EB and EC mean evolving into vortex
A, evolving into B and evolving into C, respectively.
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Figure 9. For caption see facing page.
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Figure 10. (θ, φ)-plane distributions of each quantity in the azimuthal vorticity equation at
t = 108π: (a) the azimuthal vorticity component represented by contour lines at the lev-
els 0,±0.03,±0.06,±0.09,±0.095,±0.105,±0.11,±0.115,±0.12,±0.15,±0.18; (b) the vorticity tilting
term, the contour levels range from −3.0 to 3.0 in steps of 0.3; (c) the vorticity stretching term, the
contour levels range from −0.01 to 0.01 in steps of 0.001; (d) the vorticity twisting term, the contour
levels range from −3.0 to 3.0 in steps of 0.3; (e) the vorticity advection term, the contour levels
range from −0.3 to 0.3 in steps of 0.03; (f) the vorticity viscous diffusion term, the contour levels
range from −0.5 to 0.5 in steps of 0.05. All quantities are integrated along the radial direction over
the gap. Solid lines show positive values while dashed lines show negative ones.

for generating the spiral vortices B and C. For the developing stage at t = 244π, it
is seen in figure 12(a, b) that the vorticity tilting term continues to contribute to the
vorticity generation and the spiral vortices B and C are being intensified compared
with the initial stage. Meanwhile, by examining closely figure 12(a, c), we find that
the locations of the positive peaks of the vorticity stretching term match those of
the positive-sign vorticity (spiral vortex B) and negative-sign vorticity (spiral vortex
C) simultaneously. This suggests that the effect of the vorticity stretching term is to
stretch the spiral vortex B from the inner sphere to the outer sphere while it sup-
presses the stretching of the spiral vortex C in the azimuthal direction. The vorticity
stretching term becomes significant at the developing stage and plays different roles
(stretching or compressing) in the evolution process of the spiral TG vortices, i.e.
in the formation of the spiral vortex B and the spiral vortex C. For the formation
mechanism of the spiral TG vortices at the mature stage t = 270π shown in figure
13, the vorticity tilting term and the vorticity stretching term act in a similar manner
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Figure 11. As in figure 10 but for the representative initial stage at t = 227π. Also note that the
contour levels for the vorticity stretching term (c) are changed to range from −0.04 to 0.04 in steps
of 0.004.

as they did at the developing stage although the two terms have been strengthened.
The vorticity tilting term is responsible for maintaining the spiral TG vortices (i.e.
both B and C). The vorticity stretching term provides the stretching effect on B and
is responsible for maintaining it, while the vorticity stretching term also contributes
to the suppression of the stretching of C. The different generation mechanisms for
formation of B and C lead to the three-dimensional unique structure of the spiral TG
vortices obtained in previous sections.

4. Concluding remarks
A direct numerical simulation of the flow between an inner rotating and an outer

stationary sphere was conducted to investigate the detailed structure, and formation
process and mechanism of the spiral Taylor–Görtler (TG) vortices. A numerical
method, which is exactly second-order accurate in time and space based on the finite-
difference scheme, was used to solve the Navier–Stokes equations in spherical polar
coordinates. For comparison with our previous experimental work, the moderate gap
case with clearance ratio β = 0.14 was chosen in the present numerical study. The
axisymmetric solution of the 1-vortex flow was used as the initial condition, and the
Reynolds number was quasi-statically increased to eliminate the effect of the rotational
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Figure 12. As in figure 11 but for the representative developing stage at t = 244π.

acceleration rate. With adequate initial and boundary conditions, we sucessfully
simulated the supercritical spiral TG vortex flow in this spherical Couette flow.

By systematically analysing the direct numerical simulation results, we have revealed
the detailed structure and features of the spiral TG vortices. It is seen that the spiral
TG vortex flow consists of one toroidal TG vortex, one toroidal vortex cell, three spiral
TG vortices and a secondary flow circulation in each hemisphere and this supercritical
flow solution features rotational and equatorial asymmetries. Alongside the toroidal
TG vortex near the equator there is a toroidal vortex cell with a sign of circulation
opposite to the toroidal TG vortex. It was found that the spiral TG vortices are made
up of a pair of counter-rotating, unequal spiral vortices. The spiral vortices in each
pair coexist in higher latitude regions. Further, the structural forms of these two spiral
vortices are different. That is, the former begins in the secondary flow circulation at
higher latitude and ends with a connection to the toroidal vortex cell at lower latitude.
On the other hand, the latter starts on the inner rotating spherical surface at lower
latitude and ends on the outer stationary spherical surface at higher latitude. The
spiral TG vortices are dominated by elongated quasi-streamwise vorticity structure
and are inclined to the azimuthal direction at a small angle. It is demonstrated that
the spiral TG vortices propagate in the azimuthal direction at about half of the inner
sphere’s rotating speed.

We showed a time sequence of visualizations of iso-surfaces of the azimuthal
vorticity component to illustrate the temporally and spatially growing structure of
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Figure 13. As in figure 10 but for the representative mature stage at t = 270π. In addi-
tion, the azimuthal vorticity component in (a) is represented by contour lines at the levels of
0,±0.09,±0.11,±0.13,±0.15,±0.17,±0.19,±0.21,±0.23,±0.25,±0.27. The contour levels for the vor-
ticity stretching term in (c) range from −0.1 to 0.1 in steps of 0.01 and the ones for the vorticity
viscous diffusion term in (f) range from −1.0 to 1.0 in steps of 0.1.

the spiral TG vortices. We considered their evolution process in three stages, i.e.
initial, developing and mature stages. At an early time of the initial stage, the flow
field still has rotational and equatorial symmetries, but at a later time of the initial
stage, vorticity tearing occurs and opposite-sign vorticity forms in the inner rotating
sphere boundary. The rotational and equatorial reflection symmetries of the flow
fields are broken. Early in developing stage, the vorticity torn at the initial stage
is tilted with an inclination angle to the azimuthal direction and is split into three
parts, while the vorticity formed in the inner rotating sphere boundary at the initial
stage is still attached to the inner rotating sphere surface at this stage. Later in the
developing stage, the torn, split vorticity is then elongated, tilted and appears to be
reconnected with the toroidal vortex cell. At the same time, the vorticity attached to
the inner sphere surface is now stretched from the inner-sphere boundary region and
extends into the outer-sphere boundary region. At the mature stage, the reconnection
is completed and the vortex branch region is created. The pairing process between
the two counter-rotating spiral vortices is finished and this results in the spiral TG
vortices. Vortex tearing, splitting, tilting, reconnecting, stretching and compressing
occur in the formation of the spiral vortices. The pairing of two alternating helical
vortices is the key process in the evolution of the spiral TG vortices.
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To clarify the formation mechanism of the spiral TG vortices, the terms in the
azimuthal vorticity component equation were calculated at the different evolving
stages. It was shown that the vorticity advection term acts to advect the vorticity
downstream in the azimuthal direction and the vorticity viscous diffusion term always
tends to attenuate the vorticity. The vorticity twisting term, which behaves similarly
to the vorticity viscous diffusion term, usually decreases the vorticity. However, the
remaining vorticity tilting and stretching terms are important in formation of the
spiral TG vortices. These two terms play different roles in the process of forming
two counter-rotating spiral vortices. It was found at the initial stage that the effect
of the vorticity stretching term is negligible, and the vorticity tilting term is the
dominant contribution and is responsible for generating both of the spiral vortices at
this initial stage. At the developing and mature stages, the vorticity tilting term still
generates vorticity in the spiral vortices. It works to tilt the spiral vortices at an angle
to the azimuthal direction. However, the vorticity stretching term has the effect of
stretching one of the spiral vortices from the inner sphere to the outer sphere while
also suppressing the stretching of the other spiral vortex in the azimuthal direction.
These different mechanisms combine to create the structure of the spiral TG vortices
in this spherical Couette flow.
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Munson, B. R. & Menguturk, M. 1975 Viscous incompressible flow between concentric rotating
spheres. Part 3. Linear stability and experiments. J. Fluid Mech. 69, 705–719.

Nakabayashi, K. 1983 Transition of Taylor–Görtler vortex flow in spherical Couette flow J. Fluid
Mech. 132, 209–230.

Nakabayashi, K. & Tsuchida, Y. 1988a Spectral study of the laminar–turbulent transition in
spherical Couette flow. J. Fluid Mech. 194, 101–132.

Nakabayashi, K. & Tsuchida, Y. 1988b Modulated and unmodulated travelling azimuthal waves
on the toroidal vortices in a spherical Couette system. J. Fluid Mech. 195, 495–522.

Nakabayashi, K. & Tsuchida, Y. 1995 Flow-history effect on higher modes in the spherical Couette
system. J. Fluid Mech. 295, 43–60.

Peaceman, D. W. & Rachford, H. H. 1955 The numerical solution of parabolic and elliptic
differential equations. J. Soc. Indust. Appl. Maths 3, 28–41.

Sha, W., Nakabayashi, K. & Ueda, H. 1998 An accurate second-order approximation factoriza-
tion method for time-dependent incompressible Navier–Stokes equations in spherical polar
coordinates. J. Comput. Phys. 142, 47–66.

Temperton, C. J. 1975 Algorithms for the solution of cyclic tridiagonal systems. J. Comput. Phys.
19, 317–323.

Wimmer, M. 1976 Experiments on a viscous fluid flow between concentric rotating spheres. J. Fluid
Mech. 78, 317–335.

Wimmer, M. 1981 Experiments on the stability of viscous flow between two concentric rotating
spheres. J. Fluid Mech. 103, 117–131.

Wulf, P., Egbers, C. & Rath, H. J. 1999 Routes to chaos in wide gap spherical Couette flow. Phys.
Fluids 11, 1359–1372.

Yavorskaya, I. M., Belyaev, Yu. N., Monakhov, A. A., Astaf’eva, N. M., Scherbakov, S. A. &
Vvedenskaya, N. D. 1980 Stability, non-uniqueness and transition to turbulence in the flow
between two rotating spheres. Rep. 595. Space Research Institute of the Academy of Science.
USSR.

Zikanov, O. Yu. 1996 Symmetry-breaking bifurcations in spherical Couette flow. J. Fluid Mech.
310, 293–324.


